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Abstract

Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a
prerequisite for understanding many important aspects of bird flight, including optimal migration strategies,
navigation, and compensation for wind drift. Recent developments in tracking technology and the increased
availability of data on large-scale weather patterns have made it possible to use path annotation to link the location
of animals to environmental conditions such as wind speed and direction. However, there are various measures
available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is
unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight
direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction)
throughout a bird's journey.

Results: We compared relationships between cross-wind, wind support and bird movements, using path
annotation derived from two different global weather reanalysis datasets and three different measures of direction
and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed,
explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave
qualitatively similar results; however, determining flight direction and speed from successive locations, even at short
(15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive
location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations
between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.

Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather
variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of
scaling effects must be considered and implemented in developing sampling regimes and data analysis.
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Background
Bird flight has long fascinated humanity and much re-
search has been devoted to understanding the mechan-
ics, evolution, and limitations of bird flight [1-3]. Central
to many of these questions is the understanding of how
atmospheric conditions, mainly wind, influence local
movements and migration strategies [4-9]. Laboratory-
based approaches using wind tunnels have provided
insight into the physiological, biomechanical and mor-
phological adaptations which enable birds to fly [10-13].
Beyond these laboratory experiments, however, there re-
mains the challenge of determining factors important for
optimizing the movement of wild animals in their nat-
ural environments which underlie the ecological and
evolutionary processes that have shaped current patterns
of bird flight and migratory behavior [14-16].
Understanding behavioral or physiological responses

to environmental conditions is a central question in biol-
ogy. Recent technological advances have made it possible
to use tracking technology to record the flight path of
wild birds and then determine from weather records the
atmospheric conditions at the locations where the birds
were recorded [17-20]. This approach, known as path
annotation, estimates key metrics needed for under-
standing the effect of wind on birds under natural condi-
tions including the speed of the animal relative to the
ground (ground speed) and air (airspeed). By accounting
for the recorded direction of the movements, parameters
relating to orientation, navigation, and compensation for
wind drift can be estimated [21-25]. These measures can
then be used to address important ecological and evolu-
tionary questions such as costs of migration (in terms of
travel time, flight effort and allocation of fat reserves), as
well as movement decisions (e.g. stopping to refuel en-
ergy reserves or continuing to fly) [10,26,27]. Ground
speed, and thus flight efficiency, are key determinants in
the theory of optimal migration in the field [8,13,28].
The difficulty of collecting data at an appropriate scale
has hitherto resulted in a limited quantification of flight
speed of birds, especially for migration over many thou-
sands of kilometers through constantly changing wea-
ther conditions.
The development of miniaturized satellite tracking de-

vices in the 1990s made it possible to study birds moving
at continental to global scales [29]. However, the poor
spatial accuracy of the early location data (typically in
the range of 1-100 km) limited the use of those studies
for key questions requiring higher spatio-temporal reso-
lution such as the influence of wind on direction and
speed of migration [30]. The advent of GPS tracking de-
vices, and further miniaturization of transmitters and
loggers, has recently made it practical to study animal
movement in previously unachieved detail and precision.
Tags now are capable of recording locations several
times per second with a spatial accuracy of 3m and less
[31]. At the same time, an easement of government pol-
icies on the use and sharing rights of climate data has fa-
cilitated access to global scale, hybrid model-observation
weather-reanalysis datasets. Modern web-based tools
have made it easier to store and visualize movement data
[32] and weather models, and to link recorded locations
of an animal with concurrent environmental conditions
[17,19,33]. Thus, both the flight and environmental data
are now available to address questions on how free-
ranging birds migrate over large distances through dy-
namic weather systems.
Here, we compare measured ground speed (vg) and es-

timated as well as calculated airspeed (va) for 288 birds
from nine different species tracked with GPS tags in re-
lation to the different methods used for calculating flight
direction (d) and ground speed (vg), and two sources of
weather data. By doing so, we provide the basic data
needed to determine the relationship between the
animals' speeds and the wind conditions encountered
during flight. Additionally, we address two key methodo-
logical questions critical for studying bird flight when
using GPS devices in conjunction with path annotation.
First, we investigate the sensitivity of the methods by
testing how reducing the accuracy of the estimated bird
position influences the empirical relationship between
movement and wind. Second, we assess how assumed
environmental data from two different weather-reanalysis
datasets at different spatial resolutions influence what we
can determine about the relationships between ground
speed (vg), airspeed (va) and wind conditions.
Modern GPS tags determine position with high accur-

acy via triangulation using differences in arrival time of
satellite borne signals. They also provide instantaneous
measures of direction (di) and speed (vi) based on a
Doppler-shift information that a moving tag relative to
the movement of the satellites causes. The precision of
these di and vi measurements is unclear, and before the
current study it was uncertain whether they conveyed
any ecologically relevant information in addition to flight
speed and direction determined using standard methods
from sequential GPS locations. In addition to using vi
and di, we therefore also calculated speed and direction
from the next location (vnl and dnl, respectively). Finally,
in order to investigate the potential additive effects of a
higher amount of error in determining the true location
of the animals, we included a dataset where we added
one moderate random shift to each GPS location. The
results from this dataset can inform us about the im-
portance of measurement accuracy, which can degrade
when using other methods of bird tracking, for example
telemetry from radio tags or from the ARGOS satellites.
In this dataset, the new positions were picked at random
from a 2-dimensional Gaussian distribution containing



Figure 1 Schematic representation of the calculated measures,
where α represents the vector of a bird's movement relative to
the ground. Its length is vg. Wind support (ws) is the length of the
wind vector in the direction of c and cross-wind (wc) the length of
the perpendicular component. Finally, airspeed (va) is the speed of
the bird relative to the wind and can be calculated as given above,
or modeled as the intercept of a model with vg as a function of ws

and wc.
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95% of the cumulative probability in a circle of 2 km radius
around the true GPS-determined location, corresponding
to the level of accuracy obtained in the three highest qual-
ity levels of ARGOS satellite telemetry (e.g. [34]). For these
new positions we calculated direction (dnl2k) and speed
(vnl2k) to the next (also randomly shifted) location and cor-
respondingly interpolated the wind speed and direction to
these new locations.
The Movebank Track Annotation Tool was used to an-

notate the wind direction and speed for each location using
a weighted distance interpolation of two different data
sources: 1) The ERA-interim data provided by the Euro-
pean Centre for Midrange Weather Forecast (ECMWF;
http://ww.ecmwf.int/products/data/archive/descriptions/ei/
index.html) [35] and 2) The National Centers for
Environmental Prediction (NCEP) and Atmospheric Re-
search (NCAR) Global reanalysis-II dataset, (http://www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html)
[36,37]. Using this information, our overall goal was to
model vg and va as a function of wind support (ws) and
cross wind (wc). Wind support (ws) was calculated as the
length of the wind vector in the direction of the birds'
flight where positive values represent tail wind and nega-
tive values head wind. Cross wind (wc) represented the
speed of the wind vector perpendicular to the travel direc-
tion irrespective of which side it came from (Figure 1).
Using the two different weather models and the differ-

ent ways of obtaining the birds' flight direction and
ground speed, we quantified the amount of total vari-
ance explained (as measured by the adj. R2) by the em-
pirical model that predicted ground speed (vg) as a
function of ws, wc, and their interaction term. The model
intercept represents airspeed (va) under no wind condi-
tion as it is modeled as the speed of the birds when ws

and wc are zero and was compared to the geometrically
calculated values of va according to the equation given
in Figure 1.
Thus, we provide an assessment of the effects of wind

on avian flight across a variety of species and, at the
same time, provide a qualitative assessment of the
significance of earlier findings derived with location
information of lower quality. This will facilitate the com-
parison of results across studies, which used different
methods to track birds and infer wind conditions.

Results
Despite their different spatial resolution, the two wind
datasets resulted in the same overall outcome, with neg-
ligible differences between the model estimates (Figure 2
and additional files 1, 2, 3, 4). In general, the analysis
based on the ECMWF dataset resulted in higher adj. R2

than the NCEP reanalysis-II dataset (mean decrease in
adj. R2±SD=0.07±0.06). In fact, ws and wc values from
both models were highly correlated (adj. R2±SD for
ws=0.74±0.15 and wc=0.76±0.14). We therefore present
the results only for the higher resolution ECMWF wind
dataset and provide the calculations based on NCEP
reanalysis-II as supplemental on-line material.
Using instantaneous direction (di) and ground speed

(vi) versus direction and ground speed derived from the
next location (dnl and vnl) resulted in very different cal-
culated airspeeds. Airspeed derived from geometric cal-
culation using vector addition was consistently higher
for vi and di derived measures (Figure 2 & Table 1).
Across all species, wind support (ws) was significantly

and positively correlated with ground speed (vg) as
reported by vi (in nine of nine species p<0.05, Table 1).
The estimated significance of the effect of cross wind
(wc) and the interaction term between ws and wc on vg
differed mainly depending on whether instantaneous or
next location was used (Table 1), resulting in very differ-
ent models. Using next location to derive dnl and vnl
resulted in non-significant contribution of ws (Table 1)
for three species. Using the next location including a
2 km mean error in determining the true location
resulted in the loss of the significant contribution of
ws in one more case (Table 1). Without exception, the
intercepts of the models representing estimated airspeed
under no wind condition, based on the instantaneous
values, were higher than with the two other methods
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Box plots of airspeed in meters per second calculated as given in Figure 5 using different methods of determining flight
direction and ground speed. The dark line is the median, the box represents the lower and upper quartile and the whiskers are the 1.5
inter-quartile distance. Outliers were omitted.
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(Table 1) and much closer to the calculated median air-
speed. Finally, the proportion of the variance explained
(adj. R2) was from 1.3 to >100 times higher using instant-
aneous speed and direction.
The divergence in p values, but particularly the adj. R2

associated with the instantaneous measurements, are
indicative of the strength of the effects of ws and wc on
determining ground speed (vg). At the same time, the
decrease in adjusted R2 with measurements using next
Table 1 Summary of GLMMs run for different species modelin
wind (wc) and their interaction term (ws * wc), using the three
(instantaneous, next location and next location + 2 km) desc

Species Median airspeed

Anas platyrhynchos 15.86 Instantaneous

Next location

Next location + 2 km Error

Anser albifrons 15.98 Instantaneous

Next location

Next location + 2 km Error

Branta leucopsis 15.83 Instantaneous

Next location

Next location + 2 km Error

Ciconia ciconia 13.01 Instantaneous

Next location

Next location + 2 km Error

Creagrus furcatus 9.69 Instantaneous

Next location

Next location + 2 km Error

Cygnus cygnus 16.71 Instantaneous

Next location

Next location + 2 km Error

Larus scoresbii 12.59 Instantaneous

Next location

Next location + 2 km Error

Phoebastria irrorata 13.30 Instantaneous

Next location

Next location + 2 km Error

Tadorna ferruginea 14.94 Instantaneous

Next location

Next location + 2 km Error

***= p<0.0001, **= p<0.001, *= p<0.05. N is the number of observations used in the m
using instantaneous ground speed measurements and ECMWF data (see also Figure 1)
using the regressive model under no wind condition (ws and wc = 0). In both cases a m
stationary animals.
location with or without the addition of an error indicate
that the true effects of wind support and cross winds on
determining vg (and va for that matter) are lost with
decreasing resolution (Figure 3 and Table 1). The esti-
mated model parameters also diverged in their predic-
tions of the shape of the relationship between ws and wc

on vg (Figure 3). Whereas the predicted values from the
models based on instantaneous values resulted in a
somewhat consistent appearance across all species, the
g ground speed as a function of wind support (ws), cross
methods to determine ground speed and flight direction

ribed in the text.

ws wc ws * wc Adj. R2 Intercept ± SE N

*** * NS 0.15 12.63±0.58 1293

* NS NS 0.02 5.65±0.22 418

* NS NS <0.01 4.61±0.04 1762

*** NS NS 0.45 14.91±0.6 151

NS NS NS 0.23 11.43±1.3 78

NS NS NS 0.23 11.36±1.29 78

*** ** * 0.52 14.77±0.23 1124

*** NS NS 0.26 10.66±0.41 661

*** NS NS 0.26 10.62±0.41 659

*** * NS 0.35 12.98±0.19 1534

*** NS NS 0.22 7.24±0.32 972

*** NS NS 0.23 7.32±0.25 971

*** *** NS 0.49 8.69±0.15 2001

*** *** NS 0.30 7.23±0.13 1632

NS NS ** <0.01 7.68±0.46 4769

*** *** NS 0.56 16.42±0.21 997

*** NS NS 0.16 10.38±0.40 864

*** NS NS 0.16 10.31±0.40 867

** NS NS 0.31 10.80±0.64 190

NS NS NS 0.03 5.12±0.36 75

NS NS NS 0.03 5.00±0.29 84

*** *** NS 0.66 12.45±0.18 2081

* * * 0.11 5.90±0.16 1500

* * * 0.10 6.02±0.16 1519

*** * NS 0.10 14.11±0.17 1250

NS NS NS <0.01 8.22±-0.45 464

NS NS NS <0.01 8.32±-0.47 462

odels. SE is standard error of the estimate. Median airspeeds were estimated
with vector addition, whereas the intercept represents an estimate of airspeed
inimum ground speed of 4m/s was used to filter locations that could have been
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Figure 3 Predicted ground speed as a function of wind support and cross wind derived from models based on different methods
(indicated by color) of determining flight direction and ground speed of 9 different bird species.
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models based on next location with or without error
(purple, white and orange grids respectively, Figure 3)
were less congruent in how they predicted wind support
and cross winds to influence ground speed. In general, vg
decreased with increasing wc, and if a significant inter-
action was present, this effect became stronger with in-
creasing ws (with the exception of Tadorna ferruginea
which showed the opposite pattern).
Choosing different minimum speed thresholds for fil-
tering the data prior to analysis revealed that, in most
species, the proportion of explained deviance (adj. R2)
and the estimated intercept already become stable at
minimum speeds as low as ≥2m/s and remained so at
higher speeds. This suggests that the selection of vi ≥
4m/s excluded stationary locations efficiently. The only
exception might be the mallard (Anas platyrhynchos)
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where raising the minimum ground speed was accom-
panied by a substantially higher estimated intercept. If
minimum ground speed for the mallard was raised by
only 1m/s to a minimum speed of 5m/s the intercept was
15.1m/s which is probably a more accurate estimate of
the intercept and closer to the calculated median air-
speed. Using a large minimum speed resulted in a drop
in adjusted R2 for some species (notably Ciconia ciconia,
Creagrus furcatus and Larus scoresbii) due to a reduc-
tion in their sample sizes (Figure 4).
Finally, for four species, we compared how well

models predicted ground speed as a function of wind
support, cross wind and their interaction term at differ-
ent distances to the land (Figure 5). With increasing dis-
tance to land the proportion of the variance explained
increased markedly compared to including data from
flights both overland and over the sea.
Figure 4 Estimated proportion of explained variance (adj. R2 : solid li
speed (vg) starting at 0.5m/s stopping at 10m/s. Ground speed was mod
instantaneous direction (di) and speed (vi) with individual as random effect
account for spatio-temporal autocorrelation.
Discussion
Satellite tracking and remote sensing data now allow us
to ask fundamental biological questions about large-
scale phenomena such as bird migration [17,38]. How-
ever, as with any new technology, the new data types
must be evaluated and compared to traditional methods.
Not surprisingly, we found that traditional estimates of
flight speed (from sequential, low-resolution locations)
resulted in underestimates of the true distance traveled
and translated into lower estimates of ground speed
[39]. Even in those species where we had a position
every 15 or 30 minutes (e.g. some individuals of Anas
platyrhynchos or Larus scoresbii), the differences between
using instantaneous measures and next-location measure-
ments were substantial and accompanied by a significant
drop in the amount of explained variance. This indicates
that deriving speed and direction from the next location is
ne) and intercept (dashed line) as a function of minimum ground
eled using generalized linear mixed models predicted by
and including a temporal autoregressive function to



Figure 5 Adjusted R2 (solid line) and model intercept (dashed line) as a function of distance to land using generalized linear mixed
models predicting ground speed dependent on wind support, cross wind and their interaction term with individual as random effect
and accounting for temporal autocorrelation. Since the distances at which birds were observed from land differs, the axis of distance to land
have different ranges.
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strongly influenced by scaling-dependent measurement
biases, as has also been found for measurements of move-
ment paths of terrestrial animals [39-41]. We found that
the GPS-based instantaneous direction (di) and speed (vi)
were highly informative and recommend researchers use
these parameters to address questions about the movement
ecology of tracked animals. Indeed, our results show that
even simple models using global weather models can ex-
plain an hitherto unachieved 66% of the variance in the
observed ground speed (Table 1).
Clearly, using instantaneous measures of movement in

combination with weather observations-model hybrid
reanalyzes explained a substantially higher proportion of
the original deviance than models using consecutive lo-
cations. The use of next location, more precisely the
time resolution of sampling, in combination with the
specific tortuosity of the trajectories, inevitably results in
an underestimation of ground speed. This suggests that
past studies based on GPS or satellite tracking were
likely to have underestimated the influence of wind sup-
port and cross winds on the ground speed, and for that
matter airspeed of birds. Studies that estimate flight
speed using radar [15], double theodolite systems [42],
or other immediate observational techniques are less
prone to underestimate bird speed, but are limited by
where and when birds can be measured. This result is
also evident from the stark differences in the patterns
(Figure 3) which are a consequence of the combined dif-
ferences in estimated intercept and parameter estimates
of wind support and cross wind. Finally, comparing our
estimates of airspeed with published direct observational
data derived from radar observations for example pub-
lished in [16] are strikingly similar (within one standard
deviation of the published mean airspeeds) yet consist-
ently lower. These differences might be the consequence
of the bias in the location and times observation was
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possibly with radar, or attributable to an insufficient
resolution of weather models.
The use of consecutive location as opposed to instant-

aneous measures is not only less accurate, but also
fundamentally alters the modeled relationships with en-
vironmental variables, however, with the exception of
the swallow-tailed gull, the noise added to the location
data had a negligible effect. Adding a 2 km error to each
location adds proportionally much more noise to the
flight directions and speed of highly sampled tracks of
slow-moving birds, such as the swallow-tailed gulls, than
to trajectories with lower sampling frequency of fast fly-
ing species. The relative influence of measurement error
is thus proportional to the speed of the animals, which
might explain the exception we found for the effect of
adding a 2 km error. The faster individuals move, the
smaller this influence of measurement error will become
on the angular velocity determining the noise in measur-
ing flight direction and on misjudgment of the distance
and thus speed. Therefore, the measurement error of
current tags is likely to define a lower limit of reliably
determining speed and direction.
Although instantaneous flight direction and speed are

not available for all tag types, they could be estimated by
collecting short bursts of GPS location at high resolution
(e.g. 1Hz). Often, the limiting factor in acquisition of loca-
tions using GPS tags is battery capacity, however, once the
GPS unit has established connection to the satellites and
“knows” its location, obtaining additional high frequency
locations comes at comparatively low energetic costs. It
will be interesting to compare the accuracy of measur-
ing flight directions and speed obtained by high fre-
quency GPS acquisition compared to the Doppler-shift
based instantaneous measures of direction and speed
in the light of the different measurement accuracies.
Airspeed can be calculated by vector addition or esti-

mated statistically as the model intercept under conditions
without winds. Whereas determining mean airspeed from
the vector addition is susceptible to selection of minimum
vi by shifting the distribution of speeds towards higher
values, and also changes due to the behavioral response to
the wind conditions, the statistical model intercepts were
very stable across a wide range of minimum selected
speeds. Such stable measures of airspeed could be used as
more reliable measures for comparative studies for ex-
ample, or to test hypothesis of airspeed change under spe-
cific migratory stages [9,14,15].
While most studies using direct methods of measuring

ground speed to derive airspeed show a bias towards
reporting maximum airspeed as opposed to averages or
distributions, the model intercept represents an average
over long spatial and temporal periods for a very par-
ticular condition of no wind influence. Airspeed is
predicted to show a non-linear relationship with wind
support and cross wind [1,22,24,28], a fact that was not
further investigated in this study. In fact, we removed
this non-linearity by transforming the data, as our prime
interest was to model ground speed as a function of dif-
ferent wind models and ways of calculating speed and
direction. Theory, supported by empirical evidence, pre-
dicts that with increasing head wind (negative wind sup-
port values) the birds should increase their airspeed
[1,21,23,27]. The same is true, in general, for cross wind,
where more cross wind should be compensated by in-
creasing airspeed. The fact that the median calculated
airspeed tended to be higher than the model intercept
might in fact be a consequence of this non-linear rela-
tionship. On average, in most species in our data-set, ei-
ther cross winds had large positive values or wind
support was negative, suggesting that most birds in fact
experienced head winds and/or cross wind in our sam-
ples. So the differences in estimated intercept and the
calculated airspeed could be interpreted as a conse-
quence of the fact that the birds rarely flew under no-
wind conditions but rather under conditions that re-
quired increased airspeed.
Although the choice of the wind dataset did not result

in fundamental differences in our study, the resolution
of the wind models might still play an important role as
the partially substantial increase in adj. R2 showed for in-
creasing distance to land. Global weather models are
probably less accurate over land than over open sea due
to land-cover and topographic heterogeneity making
predictions of local wind conditions very challenging
[18]. At the same time the nominal accuracy in deter-
mining GPS location and/or the instantaneous measures
of movement might be higher over open sea than land.
In the two species that did actually fly at substantial
distances from land, i.e. larger than at least one single
grid-cell size of the weather models (roughly 167 km at
the equator), the increase in adj. R2 was 35% (Branta
leucopsis) and 23% (Phoebastria irrorata), reaching a
maximum adj. R2 of 0.87 and 0.89 respectively, between
the complete data set and the subset containing only the
locations farthest from land. Assuming that the accuracy
of predicting local wind conditions generally limits the
predictive power of the empirical models, actual bird flight
speeds are likely to be even more strongly affected by
wind conditions than anticipated. It would thus be inter-
esting to investigate the change in performance of high
resolution regional atmospheric models in predicting the
relationship of flight speed and wind conditions compared
to the coarse grain information we used here.

Conclusions
The remote methods used to measure speed and direc-
tion strongly influenced the derived estimates of wind
influences on bird flight. Our results suggest that high
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spatio-temporal resolution of movement data is essential
in determining the true effects of wind on ground speed
on a micro-scale and thereby determines our estimates
of airspeed. When addressing ecological questions in-
volving the relative benefit of wind conditions, additional
knowledge or assumptions concerning directional pref-
erences and/or scales of movement may be required.
Future studies investigating bird flight in relation to
environmental conditions where the speed and flight
direction are important entities have to account for scaling
effects (e.g. [41,43]). This knowledge will help to improve
future tracking studies and advocates for high-resolution
temporal (and spatial) data. However, even despite the
coarse resolution, the access to global atmospheric wind
models already proves an important step towards a better
understanding of avian flight in the wild.

Methods
Data were collected from GPS tags supplied by two
manufacturers (Microwave Telemetry Inc., Columbia,
MD, USA and E-obs GmbH, Gruenwald, Germany),
deployed on 288 individuals from nine species, which
yielded a total of 333,082 location records along their
tracks (Table 2). The usual measurement error in GPS
tags of these manufacturers is on average around ±3m
with maximum error below ±20 m over land. The tracks
represent both migration and breeding range behavior.
The tags, using the latest GPS technology, acquire the
position according to a user defined (and thus tag-
specific) schedule (Table 2). In addition to location
coordinates and timestamps, the GPS units provide a so-
called “instantaneous heading” (di) and “instantaneous
speed” (vi) with every acquisition of a position. Although
the term used in reporting the measurement is originally
“heading”, it represents actually the birds' flight direc-
tion. As the term “heading” in movement analysis very
often refers to the direction of the body axis, we refer to
the “instantaneous heading” as flight direction (d). The
instantaneous direction (di) and speed (vi) are derived
from the Doppler-shift that a moving tag produces in
Table 2 Species composition and sample size used in the stud

Species Latin name Individuals Loca

Mallard Anas platyrhynchos 108 1495

White-fronted goose Anser albifrons 4 3382

Barnacle goose Branta leucopsis 27 3544

White stork Ciconia ciconia 4 9685

Swallow-tailed gull Creagrus furcatus 16 9249

Whooper swan Cygnus cygnus 56 5931

Dolphin gull Larus scoresbii 18 2847

Waved albatross Phoebastria irrorata 29 1614

Ruddy shelduck Tadorna ferruginea 26 4747
relation to the movement of the GPS satellites, they are
thus actual observations of “instantaneous” flight direc-
tion and speed at the time of acquisition at a given loca-
tion. Doppler-shift determination of direction and speed
requires, however, a substantial minimal speed of the tag
(and bird that carries it), because the accuracy of the de-
tection of the amplitude of the change in frequency of
the Doppler-shift decreases at low velocities (and in very
high velocities, but these are not relevant to the typical
range of migration flight speeds).
Studies investigating the interaction between ground

speed (Figure 1: vg), airspeed (Figure 1: va) and wind
have so far derived direction (dnl), ground speed (vg) and
airspeed (va) from differencing two or more points along
the sequences of locations, which, depending on the
schedule of the tags, are based on various time intervals.
We used great distances between the subsequent loca-
tions in conjunction with the time differences to calcu-
late speed from the next locations.
For each position, the shortest great circle distance

between the bird and the nearest land was determined
using the Global Self-consistent, Hierarchical, High-
resolution Shoreline database (GSHHS) (http://www.ngdc.
noaa.gov/mgg/shorelines/gshhs.html). The Movebank Track
Annotation Tool annotated the wind direction and speed
for each location, using a weighted distance interpolation.
The ECMWF ERA-interim weather model has a global
resolution of 1.5°, which corresponds to 167 km at the
equator, and the NCEP data resolves at 2.5° at a global
scale corresponding to 278 km at the equator. For the
interpolation of wind we used surface-level winds interpo-
lated to 10m above ground, as most birds flew within the
depth of the lowest resolved atmospheric pressure layer in
the weather models. Vertical interpolation to the GPS-
recorded height did not alter the performance of our statis-
tical tests on comparison with surface level wind speed and
directions (data not shown).
For each species, method of calculating flight direction

and for each weather dataset, a generalized linear mixed
model (GLMM) was used. Temporal autocorrelation was
y

tions Time range Schedule (min between fixes)

43 Nov. 2008 – Nov. 2010 15 and 90

Feb. 2008 – Sep. 2008 120

8 Apr. 2006 – Sept. 2009 120

Mar. 2009 – May 2010 60

Aug. 2008 – Jul. 2009 5

5 Aug. 2007 – Sep.2009 60

Jan. 2009 30

0 May – Nov. 2008 90

3 Mar. 2007 – Mar. 2010 120

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
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accounted for by including a continuous autoregressive
process for a continuous time-covariate. Because most data
sets had enough data per individual, we limited the mini-
mum number of observations to 12 per individual, except
for Larus scoresbii where there were few samples per indi-
vidual so data for all individuals were combined. The iden-
tity of individual birds (individual ID) was included as a
random factor in the GLMM to account for individual dif-
ferences in airspeed. We excluded all locations with ground
speeds <4m/s (indicating stationary animal or discontinuous
movement) and speeds >30m/s (as there was a high prob-
ability that these outliers were measurement errors). Thus,
we derived predictive models of ground speed as a function
of wind support and cross winds and their interaction
accounting for the individual variance and the spatio-
temporal autocorrelation present in the data.
Theoretical and empirical evidence suggests that birds

should increase airspeed with increasing head wind and
cross winds (relative to intended travel directions) caus-
ing a non-linear effect of wind support and cross wind
on airspeed. The consequence of this non-linearity is
that it violates the assumptions of linear models by
introducing heteroscedasticity and a deviation of the re-
siduals from normality. Therefore, before running the
GLMM, we transformed the data using a Box-Cox trans-
formation and used a Gaussian error distribution. Due
to the Box-Cox transformation, however the model esti-
mates of the slopes cannot be cross-compared directly.
For an intuitive model comparison, we therefore plot the
model predictions for ground speed over the range of
observed wind support and cross winds (Figure 2). We
assessed the proportion of total variance explained in
the models by using adjusted R2 (adj. R2), defined as the
proportion of the residual variance over original vari-
ance, both estimated using the unbiased estimators [44].
In addition, we quantified the extent to which sensor

limitations that lead to a required minimum speed
threshold influences the model fit (adj. R2) and estimate
of the intercept (estimate of va) when using di and vi.
For this analysis, we followed the same procedure as de-
scribed above but for a range of minimum thresholds
starting at 0.5m/s to 10m/s in steps of 2m/s. First, we se-
lected a minimum speed, filtered out all observations
with instantaneous speed lower than that threshold,
transformed the remaining (above threshold) data using
a Box-Cox transformation and ran a GLMM as de-
scribed above. Finally, to assess the effect of distance to
land for those individuals that flew over sea, we quanti-
fied model fit and intercept in relation to the distance to
land using the same procedure with a minimum-speed
threshold for vi of 4m/s. For this analysis the data for
each analysis was split into 20 subsets using 20 mini-
mum distances to land spanning the observed range of
distances to land equally.
Observations and experiments on Anas platyrhynchos,
Ciconia ciconia, Cygnus cygnus were conducted under
German permits and according to German law licenced to
the Max Planck Institute for Ornithology. Experiments on
Creagrus furcatus were conducted as part of a tri-party
agreement between the Max Planck Institute for
Ornithology, the Charles-Darwin Research Station and
the Galapagos National Park Service and permitted by
Ecuadorean law. Tagging and tracking methods for
Phoebastria irrorata was reviewed and approved by the
Galapagos National Park Service. Larus scroesbi were
studied under permissions from the Falkland New Island
Conservation Trust. Tracking of Cygnus cygnus and
Branta leucopsis was undertaken with the approval of
Wildfowl and Wetlands Trust's Animal Welfare and
Ethics Committee and under license from the British
Trust for Ornithology. Procedures for capture, handling,
and marking of Anser albifrons and Tadorna ferruginea
were approved by a U.S. Geological Survey Animal
Care and Use Committee and the University of
Maryland Baltimore County Institutional ACUC (Protocol
EE070200710). Ethical approval for trapping, sampling,
and keeping of the Swedish Anas platyrhynchos was
obtained from the Swedish Animal Research Ethics Board
(“Linköpings djurförsöksetiska nämnd”, reference number
61-10).
Additional files

Additional file 1: Predicted ground speed as a function of wind
support and cross wind derived from models based on different
methods (indicated by color) of determining flight direction and
ground speed of 9 different bird species based on the lower
resolution global weather model of the National Centers for
Environmental Prediction (NCEP) and Atmospheric Research (NCAR).

Additional file 2: Estimated proportion of explained variance (adj.
R2 : solid line) and intercept (dashed line) as a function of minimum
ground speed (vg) starting at 0.5m/s stopping at 10m/s based on the
lower resolution global weather model of the National Centers for
Environmental Prediction (NCEP) and Atmospheric Research (NCAR).
Ground speed was modeled using generalized linear mixed models
predicted by instantaneous direction (di) and speed (vi) with individual as
random effect and including a temporal autoregressive function to
account for spatio-temporal autocorrelation.

Additional file 3: Adjusted R2 (solid line) and model intercept
(dashed line) as a function of distance to land using generalized
linear mixed models predicting ground speed dependent on wind
support, cross wind and their interaction term with individual as
random effect and accounting for temporal autocorrelation. The
analysis is based on the lower resolution global weather model of the
National Centers for Environmental Prediction (NCEP) and Atmospheric
Research (NCAR). Since the distances at which birds were observed from
land differs, the axis of distance to land have different ranges.

Additional file 4: Summary of GLMMs run for different species
modeling ground speed as a function of wind support (ws), cross
wind (wc) and their interaction term (ws * wc), using the three
methods to determine ground speed and flight direction
(instantaneous, next location and next location + 2 km) described
in the text. ***= p<0.0001, **= p<0.001, *= p<0.05. N is the number of
observations used in the models. SE is standard error of the estimate.

http://www.biomedcentral.com/content/supplementary/2051-3933-1-4-S1.pdf
http://www.biomedcentral.com/content/supplementary/2051-3933-1-4-S2.pdf
http://www.biomedcentral.com/content/supplementary/2051-3933-1-4-S3.pdf
http://www.biomedcentral.com/content/supplementary/2051-3933-1-4-S4.doc
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Median airspeeds were estimated using instantaneous ground speed
measurements and NCAR/NCEP data with vector addition, whereas the
intercept represents an estimate of airspeed using the regressive model
under no wind condition (ws and wc = 0). In both cases a minimum
ground speed of 4m/s was used to filter locations that could have been
stationary animals.
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